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CHAPTER 1 Finance
Chapter Outline

1.1 SIMPLE INTEREST

1.2 COMPOUND INTEREST PER YEAR

1.3 COMPOUND INTEREST PER PERIOD

1.4 CONTINUOUS INTEREST

1.5 APR AND APY (NOMINAL AND EFFECTIVE RATES)

1.6 ANNUITIES

1.7 ANNUITIES FOR LOANS

Here you will review concepts of exponential growth and geometric series with a focus on the relationship between
time and money.
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1.1 Simple Interest

Learning Objectives

Here you’ll learn to calculate the effect of time on the balance of a savings account growing by simple interest.

The basic concept of interest is that a dollar today will be worth more than a dollar next year. If a person deposits
$100 into a bank account today at 6% simple interest, then in one year the bank owes the person that $100 plus a
few dollars more. If the person decides to leave it in the account and keep earning the interest, then after two years
the bank would owe the person even more money. How much interest will the person earn each year? How much
money will the person have after two years?

Simple Interest

Simple interest is defined as interest that only accumulates on the initial money deposited in the account. This
initial money is called the principal. In the real world, most companies do not use simple interest because it is
considered too simple and instead use compound interest which compounds on itself. You will practice with simple
interest here because it introduces the concept of the time value of money and that a dollar saved today is worth
slightly more than a dollar in one year.

The formula for simple interest has 4 variables and all the problems and examples will give 3 and your job will be
to find the unknown quantity using rules of Algebra.

FV means future value and it stands for the amount in the account at some future time t.

PV means present value and it stands for the amount in the account at time 0.

t means time (usually years) that has elapsed between the present value and the future value. The value of t indicates
how long the money has been accumulating interest.

i means the simple interest rate. If the interest rate is 6%, in the formula you will use the decimal version of
0.06. Here is the formula that shows the relationship between FV and PV .

FV = PV (1+ t · i)

Let’s say Linda invested $1,000 for her child’s college education and she saved it for 18 years at a bank which
offered 5% simple interest. To find out how much she has at the end of 18 years, first identify known and unknown
quantities.

PV = $1,000

t = 18 years

i = 0.05

FV = unknown so you will use x

Then substitute the values into the formula and solve to find the future value.

2
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FV = PV (1+ t · i)
x = 1,000(1+18 ·0.05)

x = 1,000(1+0.90)

x = 1,000(1.9)

x = 1,900

Linda initially had $1,000, but 18 years later with the effect of 5% simple interest, that money grew to $1,900.

Examples

Example 1

Earlier, you were asked about the how much a person who deposits $100 today at 6% simple interest will have in
one year and in two years. That person will have have $106 in one year and $112 in two years.

Example 2

Tory put $200 into a bank account that earns 8% simple interest. How much interest does Tory earn each year and
how much does she have at the end of 4 years?

First you will focus on the first year and identify known and unknown quantities.

PV = $200

t = 1 year

i = 0.08

FV = unknown so we will use x

Second, you will substitute the values into the formula and solve to find the future value.

The third thing you need to do is interpret and organize the information. Tory had $200 to start with and then at the
end of one year she had $216. The additional $16 is interest she has earned that year. Since the account is simple
interest, she will keep earning $16 dollars every year because her principal remains at $200. The $16 of interest
earned that first year just sits there earning no interest of its own for the following three years.

3
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TABLE 1.1:

Year Principal at Beginning of
Year

Interest Earned that Year Total Interest Earned

1 200 200× .08 = 16 16
2 200 16 32
3 200 16 48
4 200 16 64

At the end of 4 years, Tory will have $264 on her account. $64 will be interest. She earned $16 in interest each
year.

Example 3

Amy has $5000 to save and she wants to buy a car for $10,000. For how many years will she need to save if she
earns 10% simple interest? On the other hand, what will the simple interest rate need to be if she wants to save
enough money in 15 years?

Notice that there are two separate problems. Let’s start with the first problem and identify known and unknown
quantities.

PV = 5,000

FV = 10,000

i = 0.10

t =?

Now substitute and solve for t.

Now let’s focus on the second problem and go through the process of identifying known and unknown quantities,
substituting and solving.

To answer the first question, Amy would need to save for 10 years getting a simple interest rate of 10%. For the
second question, she would need to save for 15 years at a simple interest rate of about 6.667%.

Example 4

How long will it take $3,000 to grow to $4,000 at 4% simple interest?

PV = 3,000, t =? , i = 0.04, FV = 4,000

4
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Example 5

What starting balance grows to $5,000 in 5 years with 10% simple interest?

PV =? , FV = 5,000, t = 5, i = 0.10

Review

1. How much will a person have at the end of 8 years if they invest $3,000 at 4.5% simple interest?

2. How much will a person have at the end of 6 years if they invest $2,000 at 3.75% simple interest?

3. How much will a person have at the end of 12 years if they invest $1,500 at 7% simple interest?

4. How much interest will a person earn if they invest $10,000 for 10 years at 5% simple interest?

5. How much interest will a person earn if they invest $2,300 for 49 years at 3% simple interest?

6. How long will it take $2,000 to grow to $5,000 at 3% simple interest?

7. What starting balance grows to $12,000 in 8 years with 10% simple interest?

8. Suppose you have $3,000 and want to have $35,000 in 25 years. What simple interest rate will you need?

9. How long will it take $1,000 to grow to $4,000 at 8% simple interest?

10. What starting balance grows to $9,500 in 4 years with 6.5% simple interest?

11. Suppose you have $1,500 and want to have $8,000 in 15 years. What simple interest rate will you need?

12. Suppose you have $800 and want to have $6,000 in 45 years. What simple interest rate will you need?

13. What starting balance grows to $2,500 in 2 years with 1.5% simple interest?

14. Suppose you invest $4,000 which earns 5% simple interest for the first 12 years and then 8% simple interest for
the next 8 years. How much money will you have after 20 years?

15. Suppose you invest $10,000 which earns 2% simple interest for the first 8 years and then 5% simple interest for
the next 7 years. How much money will you have after 15 years?

Review (Answers)

To see the Review answers, open this PDF file and look for section 13.1.

Principal is the amount initially deposited into the account. Notice the spelling is principal, not principle.

Interest is the conversion of time into money.
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1.2 Compound Interest per Year

Learning Objectives

Here you’ll explore how to compute an investment’s growth given time and a compound interest rate.

If a person invests $100 in a bank with 6% simple interest, they earn $6 in the first year and $6 again in the second
year totaling $112. If this was really how interest operated with most banks, then someone clever may think to
withdraw the $106 after the first year and immediately reinvest it. That way they earn 6% on $106. At the end of
the second year, the clever person would have earned $6 like normal, plus an extra .36 cents totaling $112.36. Thirty
six cents may seem like not very much, but how much more would a person earn if they saved their $100 for 50
years at 6% compound interest rather than at just 6% simple interest?

Compound Interest Per Year

Compound interest allows interest to grow on interest. As with simple interest, PV is defined as present value,
FV is defined as future value, i is the interest rate, and t is time. The formulas for simple and compound interest look
similar, so be careful when reading problems in determining whether the interest rate is simple or compound. The
following table shows the amount of money in an account earning compound interest over time:

TABLE 1.2:

Year Amount Ending in Account
1 FV = PV (1+ i)
2 FV = PV (1+ i)2

3 FV = PV (1+ i)3

4 FV = PV (1+ i)4

. . .
t FV = PV (1+ i)t

For now you should assume that you are compounding the interest once a year or annually. An account with a
present value of PV that earns compound interest at i percent annually for t years has a future value of FV shown
below:

FV = PV (1+ i)t

Applying this formula for years 1, 2, 3, and 4 for an initial deposit of $100 at 3% compound interest, you would get
the following results:

PV = 100, i = 0.03, t = 1,2,3 and 4, FV =?

TABLE 1.3:

Year Amount ending in Account
1 FV = 100(1+0.03) = 103.00

6
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TABLE 1.3: (continued)

2 FV = 100(1+0.03)2 = 106.09
3 FV = 100(1+0.03)3 ≈ 109.27
4 FV = 100(1+0.03)4 ≈ 112.55

Calculator shortcut: When doing repeated calculations that are just 1.03 times the result of the previous calculation,
use the <ANS> button to create an entry that looks like <Ans*1.03>. Then, pressing enter repeatedly will rerun the
previous entry producing the values on the right.

Examples

Example 1

Earlier you were introduced to a concept problem contrasting $100 for 50 years at 6% compound interest versus 6%
simple. Now you can calculate how much more powerful compound interest is.

PV = 100, t = 50, i = 6%, FV =?

Simple interest:

FV = PV (1+ t · i) = 100(1+50 ·0.06) = 400

Compound interest:

FV = PV (1+ i)t = 100(1+0.06)50 ≈ 1,842.02

It is remarkable that simple interest grows the balance of the account to $400 while compound interest grows it to
about $1,842.02. The additional money comes from interest growing on interest repeatedly.

Example 2

How much will Kyle have in a savings account if he saves $3,000 at 4% compound interest for 10 years?

PV = 3,000, i = 0.04, t = 10 years, FV =?

FV = PV (1+ i)t

FV = 3000(1+0.04)10 ≈ $4,440.73

Example 3

How long will it take money to double if it is in an account earning 8% compound interest?

There are two ways you can solve this problem, through estimation or through computation.

Estimation Solution: The rule of 72 is an informal means of estimating how long it takes money to double. It is
useful because it is a calculation that can be done mentally that can yield surprisingly accurate results. This can be
very helpful when doing complex problems to check and see if answers are reasonable. The rule of 72 simply states
72
i ≈ t where i is written as an integer (i.e. 8% would just be 8).

In this case 72
8 = 9≈ t, so it will take about 9 years.

7
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Exact Solution: Since there is no initial value you are just looking for some amount to double. You can choose any
amount for the present value and double it to get the future value even though specific numbers are not stated in the
problem. Here you should choose 100 for PV and 200 for FV .

PV = 100, FV = 200, i = 0.08, t =?

FV = PV (1+ i)t

200 = 100(1+0.08)t

2 = 1.08t

ln2 = ln1.08t

ln2 = t · ln1.08

t =
ln2

ln1.08
= 9.00646

It will take just over 9 years for money (any amount) to double at 8%. This is extraordinarily close to your estimation
and demonstrates how powerful the Rule of 72 can be in estimation.

Example 4

How long will it take money to double at 6% compound interest? Estimate using the rule of 72 and also find the
exact answer.

Estimate: 72
6 = 12≈ years it will take to double

PV = 100, FV = 200, i = 0.06, t =?

200 = 100(1+0.06)t

2 = (1.06)t

ln2 = ln1.06t = t ln1.06

t =
ln2

ln1.06
≈ 11.89 years

Example 5

What compound interest rate is needed to grow $100 to $120 in three years?

PV = 100, FV = 120, t = 3, i =?

FV = PV (1+ i)t

120 = 100(1+ i)3

[1.2]
1
3 = [(1+ i)3]

1
3

[1.2]
1
3 = 1+ i

i = 1.2
1
3 −1≈ 0.06266

8
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Review

For problems 1-10, find the missing value in each row using the compound interest formula.

TABLE 1.4:

Problem Number PV FV t i
1. $1,000 7 1.5%
2. $1,575 $2,250 5
3. $4,500 $5,534.43 3%
4. $10,000 12 2%
5. $1,670 $3,490 10
6. $17,000 $40,000 25
7. $10,000 $17,958.56 5%
8. $50,000 30 8%
9. $1,000,000 40 6%
10. $10,000 50 7%

11. How long will it take money to double at 4% compound interest? Estimate using the rule of 72 and also find
the exact answer.

12. How long will it take money to double at 3% compound interest? Estimate using the rule of 72 and also find
the exact answer.

13. Suppose you have $5,000 to invest for 10 years. How much money would you have in 10 years if you earned
4% simple interest? How much money would you have in 10 years if you earned 4% compound interest?

14. Suppose you invest $4,000 which earns 5% compound interest for the first 12 years and then 8% compound
interest for the next 8 years. How much money will you have after 20 years?

15. Suppose you invest $10,000 which earns 2% compound interest for the first 8 years and then 5% compound
interest for the next 7 years. How much money will you have after 15 years?

Review (Answers)

To see the Review answers, open this PDF file and look for section 13.2.
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1.3 Compound Interest per Period

Learning Objectives

Here you’ll learn to compute future values with interest that accumulates semi-annually, monthly, daily, etc.

Clever Carol went to her bank which was offering 12% interest on its savings account. She asked very nicely if
instead of having 12% at the end of the year, if she could have 6% after the first 6 months and then another 6% at
the end of the year. Carol and the bank talked it over and they realized that while the account would still seem like it
was getting 12%, Carol would actually be earning a higher percentage. How much more will Carol earn this way?

Compound Interest Per Period of Time

Consider a bank that compounds and adds interest to accounts k times per year. If the original percent offered is
12% then in one year that interest can be compounded:

• Once, with 12% at the end of the year (k = 1)
• Twice (semi-annually), with 6% after the first 6 months and 6% after the last six months (k = 2)
• Four times (quarterly), with 3% at the end of each 3 months (k = 4)
• Twelve times (monthly), with 1% at the end of each month (k = 12)

The intervals could even be days, hours or minutes. This is called the length of the compounding period. The
number of compounding periods is how often interested is compounded. When intervals become small so does the
amount of interest earned in that period, but since the intervals are small there are more of them. This effect means
that there is a much greater opportunity for interest to compound.

Nominal interest is a number that resembles an interest rate, but it really is a sum of compound interest rates. A
nominal rate of 12% compounded monthly is really 1% compounded 12 times. The formula for interest compound-
ing k times per year for t years at a nominal interest rate i with present value PV and future value FV is:

FV = PV
(
1+ i

k

)kt

As with simple interest and compound interest, the nominal rate of interest is represented with the letter i in this
formula, but the resulting rate is computed differently. A nominal rate of 12% may actually yield more than 12%.

Let’s apply the formula above to an investment of $300 at a rate of 12% compounded monthly. If you wanted to
know the amount of money the person would have after 4 years, you would take the following steps:

FV =? , PV = 300, t = 4, k = 12, i = 0.12

FV = PV
(
1+ i

k

)kt
= 300

(
1+ 0.12

12

)12·4 ≈ 483.67

Note: A very common mistake when typing the values into a calculator is using an exponent of 12 and then
multiplying the whole quantity by 4 instead of using an exponent of (12 ·4) = 48.

Examples

Example 1

Earlier, you were asked about Clever Carol and the difference in amount of money she would have if her interest
was compounded once a year versus twice a year. If Clever Carol earned the 12% at the end of the year she would

10
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earn $12 in interest in the first year. If she compounds it k = 2 times per year then she will end up earning:

FV = PV
(
1+ i

k

)kt
= 100

(
1+ .12

2

)2·1
= $112.36

Example 2

How many years will Matt need to invest his money at 6% compounded daily (k = 365) if he wants his $3,000 to
grow to $5,000?

FV = 5,000, PV = 3,000, k = 365, i = 0.06, t =?

FV = PV
(

1+
i
k

)kt

5,000 = 3,000
(

1+
0.06
365

)365t

5
3
=

(
1+

0.06
365

)365t

ln
5
3
= ln

(
1+

0.06
365

)365t

ln
5
3
= 365t · ln

(
1+

0.06
365

)
t =

ln 5
3

365 · ln
(
1+ 0.06

365

) = 8.514 years

Example 3

What nominal interest rate compounded quarterly doubles money in 5 years?

FV = 200, PV = 100, k = 4, i =? , t = 5

Example 4

How much will Steve have in 8 years if he invests $500 in a bank that offers 8% compounded quarterly?

PV = 500, t = 8, i = 8%, FV =? , k = 4

FV = PV
(
1+ i

k

)kt
= 500

(
1+ 0.08

4

)4·8
= $942.27

Example 5

How many years will Mark need to invest his money at 3% compounded weekly (k = 52) if he wants his $100 to
grow to $400?

11
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FV = 400, PV = 100, k = 52, i = 0.03, t =?

FV = PV
(

1+
i
k

)kt

400 = 100
(

1+
0.03
52

)52·t

ln4 = ln
(

1+
0.03
52

)52t

t =
ln4

52 · ln
(
1+ 0.03

52

) = 46.22 years

Review

1. What is the length of a compounding period if k = 12?

2. What is the length of a compounding period if k = 365?

3. What would the value of k be if interest was compounded every hour?

4. What would the value of k be if interest was compounded every minute?

5. What would the value of k be if interest was compounded every second?

For problems 6-15, find the missing value in each row using the compound interest formula.

TABLE 1.5:

Problem Num-
ber

PV FV t i k

6. $1,000 7 1.5% 12
7. $1,575 $2,250 5 2
8. $4,000 $5,375.67 3% 1
9. $10,000 12 2% 365
10. $10,000 50 7% 52
11. $1,670 $3,490 10 4
12. $17,000 $40,000 25 12
13. $12,000 3 5% 365
14. $50,000 30 8% 4
15. $1,000,000 40 6% 2

Review (Answers)

To see the Review answers, open this PDF file and look for section 13.3.
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1.4 Continuous Interest

Learning Objectives

Here you’ll learn to use the force of interest to compute future values when interest is being compounded continu-
ously.

Clever Carol realized that she makes more money when she convinces the bank to give her 12% in two chunks of 6%
than only one time at 12%. Carol knew she could convince them to give her 1% at the end of each month for a total
of 12% which would be even more than the two chunks of 6%. As Carol makes the intervals smaller and smaller,
does she earn more and more money from the bank? Does this extra amount ever stop or does it keep growing
forever?

Continuous Interest

Calculus deals with adding up an infinite number of infinitely small amounts. Using calculus, we can derive the
value e to help us understand what happens as k, the number of compounding periods, approaches infinity. The
number e is used frequently in finance and other fields to represent this type of continuous growth.

e≈
(
1+ 1

k

)k ≈ 2.71828 . . . as k approaches infinity

This means that even when there are an infinite number of infinitely small compounding periods, there will be a
limit on the interest earned in a year. The term for infinitely small compounding periods is continuous compound-
ing. A continuously compounding interest rate is the rate of growth proportional to the amount of money in the
account at every instantaneous moment in time. It is equivalent to infinitely many but infinitely small compounding
periods.

The formula for finding the future value of a present value invested at a continuously compounding interest rate r for t years
is:

FV = PV · ert

Applying this formula, you can determine what the future value of $360 invested for 6 years at a continuously
compounding rate of 5% is.

FV =? , PV = 360, r = 0.05, t = 6

FV = PV · ert = 360e0.05·6 = 360e0.30 ≈ 485.95

MEDIA
Click image to the left or use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/57214
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Examples

Example 1

Earlier, you were asked to compare the amount of money Clever Carol would make using different rates of com-
pounding. Clever Carol could calculate the returns on each of the possible compounding periods for one year.

For once per year, k = 1:

FV = PV (1+ i)t = 100(1+0.12)1 = 112

For twice per year, k = 2:

FV = PV (1+ i)t = 100
(
1+ 0.12

2

)2
= 112.36

For twelve times per year, k = 12:

FV = PV (1+ i)t = 100
(
1+ 0.12

12

)12 ≈ 112.68

At this point Carol might notice that while she more than doubled the number of compounding periods, she did not
more than double the extra pennies. The growth slows down and approaches the continuously compounded growth
result.

For continuously compounding interest:

FV = PV · ert = 100 · e0.12·1 ≈ 112.75

No matter how many times Clever Carol might convince her bank to compound the 12% over the course of each
year, the most she can earn from the original $100 is around $12.75 in interest.

Example 2

What is the continuously compounding rate that will grow $100 into $250 in just 2 years?

PV = 100, FV = 250, r =? , t = 2

FV = PV · ert

250 = 100 · e2r

2.5 = e2r

ln2.5 = 2r

r =
ln2.5

2
≈ 0.4581 = 45.81%

Example 3

What amount invested at 7% continuously compounding yields $1,500 after 8 years?

PV =? FV = 1,500, t = 8, r = 0.07

FV = PV · ert

1,500 = PV · e0.07·8

PV =
1,500
e0.07·8 ≈ $856.81
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Example 4

What is the future value of $500 invested for 8 years at a continuously compounding rate of 9%?

FV = 500e8·0.09 ≈ 1027.22

Example 5

What is the continuously compounding rate which grows $27 into $99 in just 4 years?

99 = 27e4r

Solving for r yields: r = 0.3248 = 32.48%

Review

For problems 1-10, find the missing value in each row using the continuously compounding interest formula.

TABLE 1.6:

Problem Number PV FV t r
1. $1,000 7 1.5%
2. $1,575 $2,250 5
3. $4,500 $5,500 3%
4. $10,000 12 2%
5. $1,670 $3,490 10
6. $17,000 $40,000 25
7. $10,000 $18,000 5%
8. $50,000 30 8%
9. $1,000,000 40 6%
10. $10,000 50 7%

11. How long will it take money to double at 4% continuously compounding interest?

12. How long will it take money to double at 3% continuously compounding interest?

13. Suppose you have $6,000 to invest for 12 years. How much money would you have in 10 years if you earned
3% simple interest? How much money would you have in 10 years if you earned 3% continuously compounding
interest?

14. Suppose you invest $2,000 which earns 5% continuously compounding interest for the first 12 years and then
8% continuously compounding interest for the next 8 years. How much money will you have after 20 years?

15. Suppose you invest $7,000 which earns 1.5% continuously compounding interest for the first 8 years and then
6% continuously compounding interest for the next 7 years. How much money will you have after 15 years?

Review (Answers)

To see the Review answers, open this PDF file and look for section 13.4.
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1.5 APR and APY (Nominal and Effective
Rates)

Learning Objectives

Here you’ll learn how to compare rates for loans and savings accounts to find more favorable deals.

In looking at an advertisement for a car you might see 2.5% APR financing on a $20,000 car. What does APR mean?
What rate are they really charging you for the loan? Different banks may offer 8.1% annually, 8% compounded
monthly or 7.9% compounded continuously. How much would you really be making if you put $100 in each bank?
Which bank has the best deal?

Nominal and Effective Rates of Interest

A nominal interest rate is an interest rate in name only since a method of compounding needs to be associated with
it in order to get a true effective interest rate. APR rates are nominal. APR stands for Annual Percentage Rate. The
compounding periods are usually monthly, so typically k = 12.

An annual effective interest rate is the true interest that is being charged or earned. APY rates are effective
rates. APY stands for Annual Percentage Yield. It is a true rate that states exactly how much money will be earned
as interest.

Banks, car dealerships and all companies will often advertise the interest rate that is most appealing to consumers
who don’t know the difference between APR and APY. In places like loans where the interest rate is working against
you, they advertise a nominal rate that is lower than the effective rate. On the other hand, banks want to advertise
the highest rates possible on their savings accounts so that people believe they are earning more interest.

In order to calculate what you are truly being charged, or how much money an account is truly making, it is necessary
to use what you have learned about compounding interest and continuous interest. Then, you can make an informed
decision about what is best.

Take a credit card that advertises 19.9% APR (annual rate compounded monthly). Say you left $1000 unpaid, how
much would you owe in a year?

First recognize that 19.9% APR is a nominal rate compounded monthly.

FV =? PV = 1000, i = .199, k = 12, t = 1

FV = 1000
(

1+
0.199

12

)12

≈ $1,218.19

Notice that $1,218.19 is an increase of about 21.82% on the original $1,000. Many consumers expect to pay only
$199 in interest because they misunderstood the term APR. The effective interest on this account is about 21.82%,
which is more than advertised.

Another interesting note is that just like there are rounding conventions in this math text (4 significant digits or dollars
and cents), there are legal conventions for rounding interest rate decimals. Many companies include an additional
0.0049% because it rounds down for advertising purposes, but adds additional cost when it is time to pay up. For
the purposes of this concept, ignore this addition.
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Examples

Example 1

Earlier, you were asked about financing a car and the difference between APR and APY. A loan that offers 2.5%
APR that compounds monthly is really charging lightly more than 2.5% of the initial loan per year.(
1+ 0.025

12

)12 ≈ 1.025288

They are really charging about 2.529%.

The table below shows the APY calculations for three different banks offering 8.1% annually, 8% compounded
monthly and 7.9% compounded continuously.

TABLE 1.7:

Bank A Bank B Bank C

FV = PV (1+ i)t

FV = 100(1+0.081)

FV = $108.1

APY = 8.1 %

FV = PV
(

1+
i
k

)kt

FV = 100
(

1+
0.08
12

)12

FV ≈ 108.299

APY ≈ 8.299%

FV = PV · ert

FV = 100e0.079

FV &≈ 108.22

APY ≈ 8.22%

Even though Bank B does not seem to offer the best interest rate, or the most advantageous compounding strategy,
it still offers the highest yield to the consumer.

Example 2

Three banks offer three slightly different savings accounts. Calculate the Annual Percentage Yield for each bank
and choose which bank would be best to invest in.

Bank A offers 7.1% annual interest.

Bank B offers 7.0% annual interest compounded monthly.

Bank C offers 6.98% annual interest compounded continuously.

Since no initial amount is given, choose a PV that is easy to work with like $1 or $100 and test just one year so
t = 1. Once you have the future value for 1 year, you can look at the percentage increase from the present value to
determine the APY.

TABLE 1.8:

Bank A Bank B Bank C
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TABLE 1.8: (continued)

FV = PV (1+ i)t

FV = 100(1+0.071)

FV = $107.1

APY = 7.1%

FV = PV
(

1+
i
k

)kt

FV = 100
(

1+
0.07
12

)12

FV ≈ 107.229

APY ≈ 7.2290%

FV = PV · ert

FV = 100e.0698

FV ≈ 107.2294

APY ≈ 7.2294%

Bank A compounded only once per year so the APY was exactly the starting interest rate. However, for both Bank
B and Bank C, the APY was higher than the original interest rates. While the APY’s are very close, Bank C offers a
slightly more favorable interest rate to an investor.

Example 3

The APY for two banks are the same. What nominal interest rate would a monthly compounding bank need to offer
to match another bank offering 4% compounding continuously?

Solve for APY for the bank where all information is given, the continuously compounding bank.

FV = PV · ert = 100 · e0.04 ≈ 104.08

The APY is about 4.08%. Now you will set up an equation where you use the 104.08 you just calculated, but with
the other banks interest rate.

FV = PV
(

1+
i
k

)kt

104.08 = 100
(

1+
i

12

)12

i = 12

[(
104.08

100

) 1
12

−1

]
≈ 0.0400667

The second bank will need to offer slightly more than 4% to match the first bank.

Example 4

Which bank offers the best deal to someone wishing to deposit money?

• Bank A, offering 4.5% annually compounded
• Bank B, offering 4.4% compounded quarterly
• Bank C, offering 4.3% compounding continuously

The following table shows the APY calculations for the three banks.

TABLE 1.9:

Bank A Bank B Bank C
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TABLE 1.9: (continued)

FV = PV (1+ i)t

FV = 100(1+0.045)

APY = 4.5%

FV = PV
(

1+
i
k

)kt

FV = 100
(

1+
0.044

4

)4

APY ≈ 4.473%

FV = PV · ert

FV = 100e0.043

APY ≈ 4.394%

Bank B offers the best interest rate.

Example 5

What is the effective rate of a credit card interest charge of 34.99% APR compounded monthly?(
1+ .3499

12

)12 ≈ 1.4118 or a 41.18% effective interest rate.

Review

For problems 1-4, find the APY for each of the following bank accounts.

1. Bank A, offering 3.5% annually compounded.

2. Bank B, offering 3.4% compounded quarterly.

3. Bank C, offering 3.3% compounded monthly.

4. Bank D, offering 3.3% compounding continuously.

5. What is the effective rate of a credit card interest charge of 21.99% APR compounded monthly?

6. What is the effective rate of a credit card interest charge of 16.89% APR compounded monthly?

7. What is the effective rate of a credit card interest charge of 18.49% APR compounded monthly?

8. The APY for two banks are the same. What nominal interest rate would a monthly compounding bank need to
offer to match another bank offering 3% compounding continuously?

9. The APY for two banks are the same. What nominal interest rate would a quarterly compounding bank need to
offer to match another bank offering 1.5% compounding continuously?

10. The APY for two banks are the same. What nominal interest rate would a daily compounding bank need to offer
to match another bank offering 2% compounding monthly?

11. Explain the difference between APR and APY.

12. Give an example of a situation where the APY is higher than the APR. Explain why the APY is higher.

13. Give an example of a situation where the APY is the same as the APR. Explain why the APY is the same.

14. Give an example of a situation where you would be looking for the highest possible APY.

15. Give an example of a situation where you would be looking for the lowest possible APY.

Review (Answers)

To see the Review answers, open this PDF file and look for section 13.5.
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1.6 Annuities

Learning Objectives

Here you’ll learn how to compute future values of periodic payments.

Sally knows she can earn a nominal rate of 6% convertible monthly in a retirement account, and she decides she can
afford to save $1,500 from her paycheck every month. How can you use geometric series to simplify the calculation
of finding the future value of all these payments? How much money will Sally have saved in 30 years?

Annuity

An annuity is a series of equal payments that occur periodically. The word annuity comes from annual which means
yearly. You will start by working with payments that occur once at the end of each year and then delve deeper to
payments that occur monthly or any period.

Assume an investor saves R dollars at the end of each year for t years in an account that earns i interest per period.

• The first payment R will be in the bank account for t−1 years and grow to be: R(1+ i)t−1

• The second payment R will be in the bank account for t−2 years and grow to be: R(1+ i)t−2

• This pattern continues until the last payment of R that is deposited in the account right at t years, so it doesn’t
earn any interest at all.

The account balance at this point in the future (Future Value, FV ) is the sum of each individual FV of all the
payments:

FV = R+R(1+ i)1 +R(1+ i)2 + · · ·+R(1+ i)t−2 +R(1+ i)t−1

Recall that a geometric series with initial value a and common ratio r with n terms has sum:

a+ar+ar2 + · · ·+arn−1 = a · 1−rn

1−r

So, a geometric series with starting value R and common ratio (1+ i) has sum:

FV = R · 1− (1+ i)n

1− (1+ i)

= R · 1− (1+ i)n

−i

= R · (1+ i)n−1
i

This formula describes the relationship between FV (the account balance in the future), R (the annual payment), n
(the number of years) and i (the interest per year).
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MEDIA
Click image to the left or use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/57222

The formula is extraordinarily flexible and will work even when payments occur monthly instead of yearly by
rethinking what, R, i and n mean. The resulting Future Value will still be correct. If R is monthly payments, then i
is the interest rate per month and n is the number of months.

Take an IRA (special type of savings account). If Lenny saves $5,000 a year at the end of each year for 35 years at
an interest rate of 4%, he can determine what his Future Value will be using the formula.

R = 5,000, i = 0.04, n = 35, FV =?

FV = R · (1+ i)n−1
i

FV = 5,000 · (1+0.04)35−1
0.04

FV = $368,281.12

MEDIA
Click image to the left or use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/57224

Examples

Example 1

Earlier, you were given a problem where Sally wanted to know how much she will have if she can earn a nominal
6% interest rate compounded monthly in a retirement account where she decides to save $1500 from her paycheck
every month for thirty years.

FV =? , i = 0.06
12 = 0.005, n = 30 ·12 = 360, R = 1,500

FV = R · (1+ i)n−1
i

FV = 1,500 · (1+0.005)360−1
0.005

FV ≈ 1,506,772.56
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Example 2

How long does Mariah need to save if she wants to retire with a million dollars and saves $10,000 a year at 5%
interest?

FV = 1,000,000, R = 10,000, i = 0.05, n =?

FV = R · (1+ i)n−1
i

1,000,000 = 10,000 · (1+0.05)n−1
0.05

100 =
(1+0.05)n−1

0.05
5 = (1+0.05)n−1

6 = (1+0.05)n

n =
ln 6

ln 1.05
≈ 36.7 years

Example 3

How much will Peter need to save each month if he wants to buy an $8,000 car with cash in 5 years? He can earn a
nominal interest rate of 12% compounded monthly.

In this situation you will do all calculations in months instead of years. An adjustment in the interest rate and the
time is required and the answer needs to be clearly interpreted at the end.

FV = 8,000, R =? , i = 0.12
12 = 0.01, n = 5 ·12 = 60

FV = R · (1+ i)n−1
i

8,000 = R · (1+0.01)60−1
0.01

R =
8,000 ·0.01

(1+0.01)60−1
≈ 97.96

Peter will need to save about $97.96 every month.

Example 4

At the end of each quarter, Fermin makes a $200 deposit into a mutual fund. If his investment earns 8.1% interest
compounded quarterly, what will his annuity be worth in 15 years?

Quarterly means 4 times per year.

FV =? , R = 200, i = 0.081
4 , n = 60

FV = 200 · (1+ 0.081
4 )

60−1
0.081

4
≈ $23,008.71
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Example 5

What interest rate compounded semi-annually is required to grow $25 semi-annual payments to $500 in 8 years?

FV = 500, R = 25, i =? , n = 8 · 2 = 16. Note that the calculation will be done in months. At the end you will
convert your answer to years.

FV = R · (1+ i)n−1
i

500 = 25 · (1+ i)16−1
i

20i = (1+ i)16−1

0 = (1+ i)16−20i−1

Using a graphing calculator, we find this equation has roots at i = 0 and i = 0.0290. Since i 6= 0, the semi-annual
interest rate is i = 0.0290 = 2.90% for a nominal annual interest rate of 5.80%.

Review

1. At the end of each month, Rose makes a $400 deposit into a mutual fund. If her investment earns 6.1% interest
compounded monthly, what will her annuity be worth in 30 years?

2. What interest rate compounded quarterly is required to grow a $40 quarterly payment to $1000 in 5 years?

3. How many years will it take to save $10,000 if Sal saves $50 every month at a 2% monthly interest rate?

4. How much will Bob need to save each month if he wants to buy a $33,000 car with cash in 5 years? He can earn
a nominal interest rate of 12% compounded monthly.

5. What will the future value of his IRA be if Cal saves $5,000 a year at the end of each year for 35 years at an
interest rate of 8%?

6. How long does Kathy need to save if she wants to retire with four million dollars and saves $10,000 a year at 8%
interest?

7. What interest rate compounded monthly is required to grow a $416 monthly payment to $80,000 in 10 years?

8. Every six months, Shanice makes a $1000 deposit into a mutual fund. If her investment earns 5% interest
compounded semi-annually, what will her annuity be worth in 25 years?

9. How much will Jen need to save each month if she wants to put $60,000 down on a house in 5 years? She can
earn a nominal interest rate of 8% compounded monthly.

10. How long does Adrian need to save if she wants to retire with three million dollars and saves $5,000 a year at
10% interest?

11. What will the future value of her IRA be if Vanessa saves $3,000 a year at the end of each year for 40 years at
an interest rate of 6.7%?

12. At the end of each quarter, Justin makes a $1,500 deposit into a mutual fund. If his investment earns 4.5%
interest compounded quarterly, what will her annuity be worth in 35 years?

13. What will the future value of his IRA be if Ted saves $3,500 a year at the end of each year for 25 years at an
interest rate of 5.8%?

14. What interest rate compounded monthly is required to grow a $300 monthly payment to $1,000,000 in 35 years?

15. How much will Katie need to save each month if she wants to put $55,000 down in cash on a house in 2 years?
She can earn a nominal interest rate of 6% compounded monthly.
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Review (Answers)

To see the Review answers, open this PDF file and look for section 13.6.

24

http://www.ck12.org
http://www.ck12.org/flx/show/answer%20key/Answer-Key_CK-12-Chapter-13-PreCalculus-Concepts.pdf
http://www.ck12.org/flx/show/answer%20key/Answer-Key_CK-12-Chapter-13-PreCalculus-Concepts.pdf
http://www.ck12.org/flx/show/answer%20key/Answer-Key_CK-12-Chapter-13-PreCalculus-Concepts.pdf


www.ck12.org Chapter 1. Finance

1.7 Annuities for Loans

Learning Objectives

Here you’ll learn how to compute present values of equal periodic payments.

Many people buy houses they cannot afford. This causes major problems for both the banks and the people who
have their homes taken. In order to make wise choices when you buy a house, it is important to know how much you
can afford to pay each period and calculate a maximum loan amount.

Joanna knows she can afford to pay $12,000 a year for a house loan. Interest rates are 4.2% annually and most house
loans go for 30 years. What is the maximum loan she can afford? What will she end up paying after 30 years?

Annuities for Loans

The present value can be found from the future value using the regular compound growth formula:

PV (1+ i)n = FV

PV =
FV

(1+ i)n

You also know the future value of an annuity:

FV = R · (1+i)n−1
i

So by substitution, the formula for the present value of an annuity is:

PV = R · (1+i)n−1
i · 1

(1+i)n = R · (1+i)n−1
i(1+i)n = R · 1−(1+i)−n

i

The present value of a series of equal payments R with interest rate i per period for n periods is:

PV = R · 1−(1+i)−n

i

This formula can also be used to find out other information such as how much a regular payment should be and how
long it will take to pay off a loan.

Take a $1,000,000 house loan over 30 years with a nominal interest rate of 6% compounded monthly. You are not
given the monthly payments, R. To find R, solve for R in the formula given above.

PV = $1,000,000, R =? , i = 0.005, n = 360

PV = R · 1− (1+ i)−n

i

1,000,000 = R · 1− (1+0.005)−360

0.005

R =
1,000,000 ·0.005

1− (1+0.005)−360 ≈ 5995.51
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It is remarkable that in order to pay off a $1,000,000 loan you will have to pay $5,995.51 a month, every month, for
thirty years. After 30 years, you will have made 360 payments of $5995.51, and therefore will have paid the bank
more than $2.1 million, more than twice the original loan amount. It is no wonder that people can get into trouble
taking on more debt than they can afford.

MEDIA
Click image to the left or use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/57226

MEDIA
Click image to the left or use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/57228

Examples

Example 1

Earlier, you were asked about how much Joanna can afford to take out in a loan. Joanna knows she can afford to pay
$12,000 a year to pay for a house loan. Interest rates are 4.2% annually and most house loans go for 30 years. What
is the maximum loan she can afford? What does she end up paying after 30 years? You can use the present value
formula to calculate the maximum loan:

PV = 12,000 · 1−(1+0.042)−30

0.042 ≈ $202,556.98

For 30 years she will pay $12,000 a year. At the end of the 30 years she will have paid $12,000 · 30 = $360,000
total

Example 2

How long will it take to pay off a $20,000 car loan with a 6% annual interest rate compounded monthly if you pay
it off in monthly installments of $500? What about if you tried to pay it off in monthly installments of $100?

PV = $20,000, R = $500, i = 0.06
12 = 0.005, n =?

26

http://www.ck12.org
http://www.ck12.org/flx/show/video/http%3A//www.youtube.com/embed/z1c34mW6FFs%3Fwmode%3Dtransparent%26rel%3D0%26hash%3D65c46070cf7d647f4db28077d9a334c0
http://www.ck12.org/flx/render/embeddedobject/57226
http://www.ck12.org/flx/show/video/http%3A//www.youtube.com/embed/owzf31qZIA8%3Fwmode%3Dtransparent%26rel%3D0%26hash%3D02de5f324dd72a20561f9c66edcb1888
http://www.ck12.org/flx/render/embeddedobject/57228


www.ck12.org Chapter 1. Finance

PV = R · 1− (1+ i)−n

i

20,000 = 500 · 1− (1+0.005)−n

0.005
0.2 = 1− (1+0.005)−n

(1+0.005)−n = 0.8

n =− ln0.8
ln1.005

≈ 44.74 months

For the $100 case, if you try to set up an equation and solve, there will be an error. This is because the interest on
$20,000 is exactly $100 and so every month the payment will go to only paying off the interest. If someone tries to
pay off less than $100, then the debt will grow.

Example 3

It saves money to pay off debt faster in order to save money on interest. As shown earlier, interest can more than
double the cost of a 30 year mortgage. This example shows how much money can be saved by paying off more than
the minimum.

Suppose a $300,000 loan has 6% interest convertible monthly with monthly payments over 30 years. What are the
monthly payments? How much time and money would be saved if the monthly payments were larger by a factor of
13
12 ? This is like making 13 payments a year instead of just 12. First you will calculate the monthly payments if 12
payments a year are made.

PV = R · 1− (1+ i)−n

i

300,000 = R · 1− (1+0.005)−360

0.005
R = $1,798.65

After 30 years, you will have paid $647,514.57, more than twice the original loan amount.

If instead the monthly payment was 13
12 ·1798.65 = 1948.54, you would pay off the loan faster. In order to find out

how much faster, you will make your unknown.

PV = R · 1− (1+ i)−n

i

300,000 = 1948.54 · 1− (1+0.005)−n

0.005
0.7698 = 1− (1+0.005)−n

(1+0.005)−n = 0.23019

n =− ln0.23019
ln1.005

≈ 294.5 months

294.5 months is about 24.5 years. Paying fractionally more each month saved more than 5 years of payments.

294.5 months ·$1,948.54 = $573,847.99

The loan ends up costing $573,847.99, which saves you more than $73,000 over the total cost if you had paid over
30 years.
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Example 4

Mackenzie obtains a 15 year student loan for $160,000 with 6.8% interest. What will her yearly payments be?

PV = $160,000, R =? , n = 15, i = 0.068

160,000 = R · 1− (1+0.068)−15

0.068
R≈ $17,345.88

Example 5

How long will it take Francisco to pay off a $16,000 credit card bill with 19.9% APR if he pays $800 per month?
Note: APR in this case means nominal rate convertible monthly.

PV = $16,000, R = $600, n =? , i = 0.199
12

16,000 = 600 ·
1−
(
1+ 0.199

12

)−n

0.199
12

n = 24.50 months

Review

For problems 1-10, find the missing value in each row using the present value for annuities formula.

TABLE 1.10:

Problem Num-
ber

PV R n (years) i (annual) Periods
per year

1. $4,000 7 1.5% 1
2. $15,575 5 5% 4
3. $4,500 $300 3% 12
4. $1,000 12 2% 1
5. $16,670 10 10% 4
6. $400 4 2% 12
7. $315,000 $1,800 5% 12
8. $500 30 8% 12
9. $1,000 40 6% 4
10. $10,000 6 7% 12

11. Charese obtains a 15 year student loan for $200,000 with 6.8% interest. What will her yearly payments be?

12. How long will it take Tyler to pay off a $5,000 credit card bill with 21.9% APR if he pays $300 per month?
Note: APR in this case means nominal rate convertible monthly.

13. What will the monthly payments be on a credit card debt of $5,000 with 24.99% APR if it is paid off over 3
years?

14. What is the monthly payment of a $300,000 house loan over 30 years with a nominal interest rate of 2%
convertible monthly?
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15. What is the monthly payment of a $270,000 house loan over 30 years with a nominal interest rate of 3%
convertible monthly?

Review (Answers)

To see the Review answers, open this PDF file and look for section 13.7.

The effects of interest on lump sum deposits and periodic deposits were explored. The key idea was that a dollar
today is worth more than a dollar in a year.
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